jueves, 7 de noviembre de 2013

 Término :

-Un término  es una expresión algebraica elemental donde se encuentran solo operaciones de multiplicación y división de números y letras. El número se llama coeficiente y las letras conforman la parte literal. Tanto el número como cada letra pueden estar elevados a una potencia. En una expresión algebraica con varios términos, éstos están separados con signos de suma y resta.

Término independiente

El término independiente es el que consta de solo un valor numérico y no tiene parte literal.

Términos semejantes

Los términos semejantes son los que tienen exactamente la misma parte literal (con las mismas letras elevadas a los mismos exponentes), y varían solo en el coeficiente. Solo se pueden sumar y restar términos semejantes. No se pueden sumar y restar términos que no sean semejantes; sin embargo, se puede multiplicar y dividir todo tipo de términos. Si en una expresión algebraica hay varios términos semejantes, éstos se pueden simplificar sumándolos o restándolos.


Grado de un término

El grado de un término puede ser de dos tipos: grado absoluto y grado relativo.

Polinomio

Un polinomio es una expresión algebraica en la cual solo intervienen las operaciones de suma, resta y multiplicación, así como exponentes enteros positivos.Cuando el polinomio consta de uno, de dos o de tres términos se llama monomio, binomio otrinomio, respectivamente. Generalmente, un polinomio P en la variable x se expresa como:
P(x)_{}^{} = a_n x^n + a_{n - 1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}.

Valor numérico de un polinomio

Es el valor que se obtiene al sustituir las letras por valores numéricos y luego realizar las operaciones del polinomio.

Leyes del álgebra elemental

Propiedades de las operaciones

  • La operación de adición (+)
    • se escribe \, a + b
    • esconmutativa: \, a + b = b + a
    • es asociativa: \, (a + b) + c = a +(b + c)
    • tiene una operación inversa, llamada sustracción : \, (a + b)- b = a , que es igual a sumar un
    • número negativo  , \, a-b = a +(-b)
    • tiene un elemento neutro 0 que no altera la suma: \, a + 0 = a
  • La operación de multiplicación  (×)
    • se escribe \, (a \times b) ó \,( a \cdot b )
    • es conmutativa: \, (a \cdot b ) =  \, (b \cdot a)
    • es asociativa:  \, (a \cdot b) \cdot c = a \cdot (b \cdot c)
    • es abreviada por yuxtaposición:  a \cdot b \equiv ab
    • tiene una operación inversa, para números diferentes a cero, llamada división   \frac{(ab)}{b} = a , que es igual a multiplicar por el recíproco,  \frac{a}{b} = a \left(\frac{1}{b} \right)
    • tiene un elemento neutro 1 que no altera la multiplicación:  a \times 1 = a
    • es distributina  respecto la adición:  \, (a + b) \cdot c = ac + bc
  • La operación de potenciación :
    • se escribe  \, a^{b}
    • es una multiplicación repetida:  a^{n} = a \times a \times \ldots \times a (n veces)
    • no es ni comutativa ni asociativa: en general  \, a^{b}  \ne b^{a} y  \, (a^{b})^{c} \ne a^{(b^{c})}
    • tiene una operación inversa, llamada logaritmo:  \, a^{log_{a} b}= b = log_{a} a^{b}
    • puede ser escrita en términos de raíz n-ésima:  \ a^{m/n} \equiv    (\sqrt[n]{a^{m}}) y por lo tanto las raíces pares de números negativos no existen en el sistema de los números reales. (Ver: sistema de numeros complejos).
    • es distributiva con respecto a la multiplicación:  \, (a \cdot b)^{c} = a^{c} \cdot b^{c}
    • tiene la propiedad:  \ {a^{b}} \cdot {a^{c}} = a^{b + c}
    • tiene la propiedad:  \, (a^{b})^{c} = a^{bc}

Orden de las operaciones

Para completar el valor de una expresión, es necesario calcular partes de ella en un orden particular, conocido como el orden de prioridad o el orden de precedencia de las operaciones. Primero se calculan los valores de las expresiones encerradas en signos de agrupación (paréntesis, corchetes, llaves), luego las multiplicaciones y divisiones y, por último, las sumas y las restas.

Propiedades de la igualdad

La relación deigualdad (=) es:
  • reflexiba  \, a = a
  • sométrica : si  \, a = b entonces  \, b = a
  • transitiva: si  \, a = b y  \, b = c entonces  \, a = c

Leyes de la igualdad

La relación de igualdad (=) tiene las propiedades siguientes:
  • si  \, a = b y  \, c = d entonces  \, a + c = b + d y  \, ac = bd
  • si  \,a = b entonces  \, a + c = b + c
  • si dos símbolos son iguales, entonces uno puede ser sustituido por el otro.
  • regularidad de la suma: trabajando con números reales o complejos sucede que si  \, a + c  = b + c entonces  \, a = b .
  • regularidad condicional de la multiplicación: si  \, a \cdot c  = b \cdot c y  \, c no es cero, entonces \, a = b .

Leyes de la desigualdad

La relación de desigualdad (<) tiene las siguientes propiedades:
  • de transitividad: si  \, a < b y  \, b < c entonces  \, a  < c
  • si  \, a < b y  \, c < d entonces  \, a + c <  b + d
  • si  \, a < b y  \, c > 0 entonces  \, ac <  bc
  • si  \, a < b y  \, c < 0 entonces  \, bc  < ac

Regla de los signos

En el producto y en el cociente de números positivos (+) y negativos (-) se cumplen las siguientes reglas:


   \begin{cases}
      + \cdot -  = - \\
      + \cdot +  = + \\
      - \cdot -  = + \\
      - \cdot +  = -
   \end{cases}

No hay comentarios:

Publicar un comentario